A Plücker coordinate mirror for type A flag varieties

نویسندگان

چکیده

We introduce a superpotential for partial flag varieties of type A $A$ . This is map W : Y ∘ → C $W: Y^\circ \rightarrow \mathbb {C}$ , where $Y^\circ$ the complement an anticanonical divisor on product Grassmannians. The $W$ expressed in terms Plücker coordinates Grassmannian factors. construction generalizes Marsh–Rietsch coordinate mirror show that distinguished cluster chart $Y$ our agrees with earlier mirrors constructed by Eguchi–Hori–Xiong and Batyrev–Ciocan-Fontanine–Kim–van Straten. Our main tool quantum Schubert calculus variety.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

Homogeneous coordinate rings and mirror symmetry for toric varieties

In this paper we give some evidence for M Kontsevich’s homological mirror symmetry conjecture [13] in the context of toric varieties. Recall that a smooth complete toric variety is given by a simplicial rational polyhedral fan ∆ such that |∆| = Rn and all maximal cones are non-singular (Fulton [10, Section 2.1]). The convex hull of the primitive vertices of the 1–cones of ∆ is a convex polytope...

متن کامل

Quivers of Type A, Flag Varieties and Representation Theory

Introduction. In this survey, we describe and relate various occurences of quivers of type A (both finite and affine) and their canonical bases in combinatorics, in algebraic geometry and in representation theory. The ubiquity of these quivers makes them especially important to study : they are pervasive in very classical topics (such as the theory of symmetric functions) as well as in some of ...

متن کامل

K-theoretic J-functions of Type a Flag Varieties

The J-function in Gromov-Witten theory is a generating function for one-point genus zero Gromov-Witten invariants with descendants. Here we give formulas for the quantum K-theoretic J-functions of type A flag manifolds. As an application, we prove the quantum K-theoretic J-function version of the abelian-nonabelian correspondence for Grassmannians and products of projective space.

متن کامل

Multiple Flag Varieties of Finite Type

We classify all products of flag varieties with finitely many orbits under the diagonal action of the general linear group. We also classify the orbits in each case and construct explicit representatives.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of The London Mathematical Society

سال: 2022

ISSN: ['1469-2120', '0024-6093']

DOI: https://doi.org/10.1112/blms.12630